Parity Deformed Jaynes-Cummings Model: “Robust Maximally Entangled States”

نویسندگان

  • A. Dehghani
  • B. Mojaveri
  • S. Shirin
  • S. Amiri Faseghandis
چکیده

The parity-deformations of the quantum harmonic oscillator are used to describe the generalized Jaynes-Cummings model based on the λ-analog of the Heisenberg algebra. The behavior is interestingly that of a coupled system comprising a two-level atom and a cavity field assisted by a continuous external classical field. The dynamical characters of the system is explored under the influence of the external field. In particular, we analytically study the generation of robust and maximally entangled states formed by a two-level atom trapped in a lossy cavity interacting with an external centrifugal field. We investigate the influence of deformation and detuning parameters on the degree of the quantum entanglement and the atomic population inversion. Under the condition of a linear interaction controlled by an external field, the maximally entangled states may emerge periodically along with time evolution. In the dissipation regime, the entanglement of the parity deformed JCM are preserved more with the increase of the deformation parameter, i.e. the stronger external field induces better degree of entanglement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Q-deformed Jaynes-cummings Model and Its Q-supercoherent States *

In this paper, we have proposed a q-deformed Jaynes-Cummings(JC) model and constructed the q-SuperCoherent States(q-SCSs) for the q-deformed JC model. We have also discussed the properties of the qsupercoherent states and given the completeness relation expression. The representation of the q-supercoherent states for the q-deformed JC model is studied as well. PACS number(s): 03.65.Nk Key Works...

متن کامل

Strong-driving-assisted multipartite entanglement in cavity QED.

We propose a method of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in a cavity of high quality factor with a strong classical driving field. It is shown that, with a judicious choice of the cavity detuning and the applied coherent field detuning, vacuum Rabi coupling produces a large number of important multipartite entangled states. It i...

متن کامل

/ 05 08 09 0 v 2 1 5 A pr 2 00 6 Scheme for generating entangled states of two field modes in a cavity

This paper considers a two-level atom interacting with two cavity modes with equal frequencies. Applying a unitary transformation, the system reduces to the analytically solvable Jaynes-Cummings model. For some particular field states, coherent and squeezed states, the transformation between the two bare basis's, related by the unitary transformation, becomes particularly simple. It is shown ho...

متن کامل

On-demand maximally entangled states with a parity meter and continuous feedback

Generating on-demand maximally entangled states is one of the cornerstones for quantum information processing. Parity measurements can serve to create Bell states and have been implemented via an electronic Mach-Zehnder interferometer among others. However, the entanglement generation is necessarily harmed by measurement-induced dephasing processes in one of the two parity subspaces. In this wo...

متن کامل

(p, q)-Deformations and (p, q)-Vector Coherent States of the Jaynes-Cummings Model in the Rotating Wave Approximation

Classes of (p, q)-deformations of the Jaynes-Cummings model in the rotating wave approximation are considered. Diagonalization of the Hamiltonian is performed exactly, leading to useful spectral decompositions of a series of relevant operators. The latter include ladder operators acting between adjacent energy eigenstates within two separate infinite discrete towers, except for a singleton stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016